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The data limiter suppression factor is an important parameter in determining
Subcarrier Demodulator Assembly (SDA) performance in the presence of sub-
carrier phase jitter. A new mathematical model for this suppression factor is
presented which, unlike previous models, allows for variable data symbol transi-
tional probabilities and data filter time constant. Each of these quantities is
examined for its effect on the data suppression factor. Finally, an example is
presented which shows effects on SDA performance for data symbol transitional

densities other than 50%.

|. Introduction

The Subcarrier Demodulator Assembly (SDA) models
for use in the DSN were designed on the assumption
that data have a transition probability of 509 and that
rp/Tsy = %, where 7 is the data filter time constant (see
Fig. 1), and Tgy is the data symbol period. This assump-
tion, however, is limited in data analysis since it occurs
quite frequently that the symbol transition density is
other than 509% and r,/Tsy ranges from approximately
% to .

The suppression factor («’) is a very important param-
eter in determining demodulation performance. Since (o)
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varies as a function of data transitional densities, vp/T sy,
and STsy/N, (signal energy to noise spectral density ratio
into the data filter), a study was made to determine the
data suppression factor (/) as a function of these vari-
ables. This article also presents the effects on SDA
degradation (symbol energy to noise spectral density out
of SDA/symbol energy to noise spectral energy into
SDA) as rp/Tsy and symbol transition density change.

Figure 1 is a functional block diagram (BLK III only)
for the Subcarrier Demodulator Assembly. The input
signal is an RF signal at the IF frequency of the receiver.
The receiver phase tracks the received carrier and
heterodynes it to the IF frequency at a fixed phase. The
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received signal contains telemetry data in the form of a
binary waveform which biphase modulates a square-
wave subcarrier. The modulated subcarrier, which is also
a binary waveform, in turn modulates the carrier. The
purpose of the Subcarrier Demodulator Assembly is to
recover the original binary telemetry waveform by syn-
chronously demodulating both the carrier and subcarrier.
The receiver provides a reference signal at 10 MHz to
demodulate the carrier. The reference signal, to demodu-
late the subcarrier, is provided by the demodulator itself,
a portion of which acts as a phase-locked loop to track
the subcarrier. Both demodulation processes take place
in the upper channel of Fig. 1. The output of the upper
channel is the recovered binary waveform which is sent
to another part of the overall system for detection. The
output waveform m(t) is also filtered and limited to pro-
vide an estimate 7(t) of the binary waveform (the re-
covered waveform is typically contaminated with noise
and not strictly binary).

The term m(£) » m(t) represents the data symbol stream
m(t) multiplied by an estimate m(t) of the symbol stream.
m(t), the voltage at the output of the data hard limiter,
represents the data symbol stream m(t) with serrations
due to Gaussian receiver noise plus a time delay at data
transition due to the data filter time constant 7, (see
Fig. 2). The average value of m(t)* T/Y\l(t) over many digit
periods is designated as (o’), the data suppression factor
(Ref. 1):

o = m(t) m(t) = (fraction of time M(f) agrees with

m(t) — fraction of
time M(t) disagrees with m(t))

II. Mathematical Model

In formulating the model (see Fig. 3), consider a binary
input signal x(t) of the form

x(t) = -+ + XD + X,,D* + XuD? + X, + XuD
+X.D? + X,D° + -+

where X, (n = ---, —2, —1,0, 1, 2, --*) are independent
binary random variables assuming the value of V with
probability P and the value of —V with probability
(1 — P), and D is the delay operator of time Tgy. Let
this signal be immersed in white Gaussian noise n(t),
which is zero mean and has a two-sided noise spectral
density of N,/2. The composite signal z(t) = x(t) + n(t)
is passed through a first order linear filter with transfer
function F(s) = 1/(1 + 58).
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The output y(¢) is then hard limited to produce the
signal u(t) (called data estimate), i.e.,

ify(r) >0
ify(r) <0

u(t) = +1,
u(t) = —1,

The problem to be examined then is to find the average
value of the product of the data and data estimate,
namely,

o = E {u(t) - x(t)} = E {m(t) - m(£)}
as a function of R = V?T/N, = ST /N,, P, and Tgy/7p.

Since the filter has the greatest effect on most recent
symbols of the incoming signal, the problem could be
simplified by assuming that the symbol stream is all zero
except the last two symbols and then adding small effects
asserted by all previous symbols. In detail, initially as-
sume that x(¢) takes on value V with probability P, and
value —V with probability (1 — P) at time from 0 to ¢
(¢t < T), —T to 0, and has value 0 all the previous time
(—w to —T). Examine the filter output. The same
process should be repeated by tracing back one more
symbol period, namely, it takes on V, —V with prob-
ability P, 1 — P at period —2T to —T, 0 at period
(— to —2T). Using the linear property of the filter,
this result could be obtained from that of the initial case
by adding small changes affected by this extra symbol
period. Repeating this process by adding more symbols
to be analyzed, the o/ = E {u(t) * x(t)} should finally con-
verge to a limit, since less effects are being produced by
the filter with each previous symbol added. The iteration
process could be stopped when o converges to a limit.

In obtaining the expected value of u(t) x(t), it would
be easier to assume a particular incoming waveform,
find E {u;(t) x;(t)) given that particular waveform (called
conditional expected value given a particular case), then
average the expected values over all the possible cases
of incoming signals according to their probabilities of
occurrences.

Ill. Mathematical Analysis
A. Analysis of Two-Symbol Periods (One Traced Back)

First, consider the case when one symbol period is
being traced back (two symbols are being analyzed),
namely, the incoming signal is assumed to have voltage
zero from time — o to —T, have voltage V with prob-
ability P, —V with probability (1 — P) at time —T to 0,
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and have voltage V or —V with probability P or (1 — P)
from 0 to ¢t (t < T). In other words, one of the following
four cases might occur:

-1 %0
v
[ Vol
0 =
-V
v 1
(i7) I ‘ !
-V T 0t
v
(i) I ’ :
-V -T 0t
v
(iv) o
| 1y
-V -T 0 t

q: denotes the probability for each case to occur; then
g =P, ¢=Q1—-PP, gs=P(1—P), q.=(1—P),
since X,’s are independent binary variables. Now, as-
suming one of the above four cases does occur, called i,
then ¢;(t) = E {u(t)x;(t)/i}. Since u;(t) =1 or —1, &(¢)
could be analyzed as in discrete cases with two sample
points; thus,

&(t) = E {xi(t)* L|ui(t) = 1}« P (wi(t) = 1)

+ E {x:(8) (=) |ui(t) = —1} P (u
P(u;(t) =1)

i(t) = -1
— X, P(wit) = —1)

P (ui(t) = 1))

= X"i °
=X, - — X, (1 -
= X,, (2P (wi(t) = 1) —1)

where X,; indicates the magnitude of signal from time
0 to ¢ at event 1.

Now, analyze P (u;(t) = 1):

P(ui(t) = 1) = P(yi(t) > 0)

™

=P (/Og"\/fb(x(t

since rp > 0

* 1
= P< —e Mg (t—~A)dr > O/i>

—A)+nlt — A)dr > 0/i>,
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P</ n{t—AeMody>
/ eMox; ( t—A)dA/z)

f1<t) 2/;006"‘/’» X; (t — /\)d/\

t
=/ ey, dA
D}

t+T
+ / eMpx,, dr+0
£

Now let

where x,, indicates the magnitude of the signal from —T
to 0 at event i. Then solving for specific values of f;(¢)
vields:

f1(t) = Vrp (1 — e¥/70) + Vi (€770 — e~(t+1)/70)
fo(t) = Vrp (1 — e74/™) — Vip (et/™ — g (++1)/70)
fo(t) = —Vip (1 — e¥/™) + Vrp (e — g~ (1+7)/70)
fs(#) = —Vip (1 — e"/™0) — Vrp (e /™ — e (+1)/70)

Since

/wn (t—A)eM™od)

has Gaussian distribution with zero mean and N,rp/4
variance, then

P(fn(t—x)e—xm,dkz _fi(t)) _

L) 14

This claim will be proved rigorously in Subsection C.
At this point, it is observed that no closed-form expres-
sion could be obtained in evaluating erf [f;(f) (2/Norp)*]
as function of R = V*T/N,, P, and Tg/7p. A computer
program will be necessary to evaluate these functions.
Now, average over all the conditional expected values to
obtain E [u(t) x(¢)].

Conditional expected value for case i:

£it) = Xo, [2P (ui(t) = 1) — 1] = X, erf [f"(t) (N?TDY]
h(t) = % qi Li(#)

(8)] :%KT h(t) dt
=3¢, T/erf[fz( )< 02,.D>vzdt]

(1)
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We will now reformulate Eq. (1) in a more convenient a; = \2Rx2
form for computer solution:

=q, = —\2R3
V[T 2 \* s = G
t=x| ef| f,00)(w—) |dt
T ° No‘l’D
Bz = "—1 - 1 + e_A
V T
=) et {{ v vm f=1+1—e
+Vrp (€™ — e“‘”')/"n):l \/E } Bi=1—-1+¢?
oTD
Let
T B. Analysis of Three-Symbol Periods (Two Traced Back)
V2 T
= ) - After analyzing the initial condition as in Subsection A,
the next step is to add one more symbol to be traced
Y / [ \ & \/1_'1;\/-2- back. It is necessary to average the following eight cases
VT whose probabilities of occurrences are P3, (1 — P)Pz,
P(1 — P)P, (1 — P)?P, P(1 — P), (1 — P)P(1 — P), P(1 —
“(1— et/ + et/ — e-ﬂm/fn)] P)’, and (1 — P)*:
V T
L= -Tf erff (\VZEAI[1+ e¥/™(—1+1—eM]}dt X X %
0 -2 - v
0 oo N
Now let - 2T -T 0 ¢
-v
a; = V2RA!
0 T
Br=—-1+1—¢> v 1|
al af oo
u=e" . v
Th (i) == I d 0
en 2t 1 of v,
V T
L=+ / erf (o, + o,8.e7%/72) dt v
T 0 (iv) = 1 ! 0
S i 21| -1} of ¢+ v
e 73 -
= T'—_/ erf (o, + alﬂlu)T (—p) v
() = : ] 0
_Y_/‘Mdu AR I E
PN u
v
The same procedures are used to obtain ¢, &, & such ) = ' 0
that: st -1 ot v
l—-‘ v
a =‘_Z qi&i @) (viD) ¢ 0
i - 2t o) v
where
_ V [t erf (ai -+ ai,B;u) . (viii) = | v 0
(;—-I/H—;——du, i=234 2] 1) of
(3)
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= % [) " ert (fl(t) (me)%> a

f1 = VTD(I - e"/"")

+ Virp(e?/™ — e—(tﬂ’)/‘rn)

+ VTD(E“(t+T)/TD —_ e—(t+2T)/Tn)

S A 4V
C1""T . € No \/T

. (1 — e—t/‘rn + e-t/‘rp — e-(t+T)/1'p

—(t+TY/Tp — (¢+2T)/7p
+e e £

Letting T/7p = A,

V T
L=7 [ erf (\/ARAT [1 + et/

(141~ e+ et —e)]) dt

Let
a; = V2RA?
Br=—-1+1—e*+e*—e?
u =gl

Then,

V T
L= —T-/ erf (0, + a,B.e7"/™) dt

- d
= ¥/1 erf (a; + a;5:u) -;u (—7p)

_ \;[1 erf (o, + a,8:u) du

A u

The same procedures are applicable to obtain

V[l erf (0.«; + ai,Biu) du

fizx A "
i=23, -8
o = 0, = 03 = 0y = V2ZRAT
Oy = 0 = 0y = ag = —V2RA?

Br=—L+ (L= %) — (e — o)

Bs=—1—(1—e?) +(e*—e™)
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(4)

Bi=—1—(1—e)—(e*—e?)
Bs=1+(1—e?)+ (e*—e*)
Bs=1+(1—e?)— (e*—e?)
Br=1—(1—e*)+ (e*—e™)
Bs=1—-(1—¢e* —(e*—e™)

Continue this iteration process by adding more symbols
to be analyzed. A computer program was written which
shows E[u(t) x(t)] converges very rapidly. Thus, an accu-
rate solution could be obtained with the two or three
symbols traced back.

C. Proof of the Claim

Statement of the claim:

/ ) n(t — A) eMindr

has Gaussian distribution with zero mean and N,rp/4
variance knowing that E{n(f)} =0 and autocorrelation
function of n(t) = (N,/2)8(z).

Proof:

E[ A wn(t — A) e d)\:I

- / “Elevmn(t — 2] d

- / ® eMm Bn(t — )] da
=[° e Od) = 0
Variance of
[ ﬁ wn(t —\) e d)\]
= El: ﬁ " g n(t — A)dx /; “ eBim n{t — B) dﬁ}

= f ) / * e Mo g8/ E[n(t — A) n(t — 8)] dAdB
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8(8 — A) dradp

E 0 NU
— M7 g-BiT «
/) / et
E £ No
-/ e [ S ap — ) da | g
] a 2

SO

n(t) :/w eMon(t — r)da en(O, NI”)

D. Find Probability That n(t) > —f,(t)

Pln(t) > —H(t) = ’
9 NoTD
e
-fi(t) 4
/)
e—z
= _-____.2— dx — (A)
7Norp
-fi(ty 2
Let
X2
2 =
y No"'D
2
_ 2 .
y NOTD
2
dy = Nors dx
2 7Norp
= yz. . d
~fi(8) (2 NyTp) 112 \ Norp 9 Y
=,
- 2'"2.dy
\/:; fi(t) (2/NoTp)1/2
1 /
== e dy -+ ——-/ e
\/7_" fi () (2/NoTp)V/2 y
_Lo "1
= 2 ;
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IV. Results/Discussion

Using the iteration process discussed in Subsections
II-A and III-B, we obtain the data limiter suppression

factor averaging over three symbols as follows:

o = E{u(t)

}~Zq€1

where

q: = probability of the ith event

=L [ ot waw

Y u
A=Tsy/rp
V=1

U = variable of integration

9. = P* q. = P1 — P); ¢s = g q. = P*(1 — P)3;

(5)

G5 = G295 = G397 = 443 qs = (1 — P)*P;qs = —qy;

G0 = 744 911 = —q4 12 = — Q55 G153 = (4
G1s = ~qs; 915 = —(s; 16 = (1 — P)*

where

P = data transition probability

a, thru a; = /2RA™
oy thru o, = —1/2RA™
B=[-1+Dl+ D2+ D3]-A
B:=[-1+D1+D2—D3]-A
B, =[—1+D1— D2+ D3]-A
B:=[—-1+D1—-D2—-D3]-A
Bs=[{—1—D1+ D2+ D3]-A
B.=[—1-DI1+D2-D3]-A
Br=[{—-1—-D1—-D2+D3]-A
Bs=[—1—D1-D2~D3]-A
=[1+D1+D2+D3}-A
Bio=[l+Dl+D2—D3]-A
Bii=[1+D1—-D2+D3]-A
Bi=[1+Dl—-D2—D3]-A
=[1-Dl1+ D2+ D3]-A
B =[1— D1+ D2—D3]-A
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B =[1—D1— D2+ D3]-A
ﬁw:[l_Dl—Dz*-DS]‘A

where

A= 2R

D1=1— EXP (—))

D2 = EXP (—) — EXP(—24)
D3 = EXP(—2)\) — EXP(—8))

The validity of averaging over only three symbols to
calculate the data suppression was investigated with a
computer program which calculated the o’ averaging
over one symbol, two, or three successive symbols. As
can be seen from Table la, the result converges rapidly
for averaging over three symbols when Tgy/7p is 3.
Although not presented, a similar test was made for
Tsy/7p in the range 3 through 12 and probability of tran-
sitions over the entire range possible. Over these values,
the data suppression factor as expressed in Egs. (5) and
(6) quickly converges, thus averaging over three symbols
is sufficient. It should be noted that the results of Egs. (5)
and (8) become less accurate for Tgsy/rp values of less
than 3 due to greater filter “memory.”

The effect of varying the Tgy/r;, ratio for a 50% proba-
bility of data transition is shown in Table 1b and plotted
on Fig. 4 for varying values of the data filter input symbol
energy to noise spectral density (STgy/N,). The data
limiter suppression factor as plotted in Fig. 4 compares
quite well with results published in Ref. 1.

Variations in o’ as a function of transitional proba-
bilities (P) are shown in Fig. 5. We see that pronounced
changes in the data suppression factor for a constant
Tsy/7p ratio and signal-to-noise ratio occur at very low
(20% ) or very high (80%) values of the transition proba-
bility. Since the Mariner Jupiter/Saturn (M]JS) mission
will be using data rates with transitional probabilities of
30 to 80%, this result is clearly important.

Finally, Subcarrier Demodulator Assembly (SDA) deg-
radation for various Tgsy/rp ratios occurring with BLK
III/IV SDA designs (see Tables 2 and 8), transitional
probabilities, and a fixed STsy/N, of 10 dB is examined
using an SDA degradation model developed by Lesh
(Ref. 2). These results are shown in Fig. 6. A symbol rate
of 8.33 was used with a wide (BLK IV) SDA bandwidth.
SDA degradation changes of greater than 0.1 dB can
result for varying probabilities of transition.
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Table 1. Table of suppression factor E(u(t)x(t))

Number
of symbols $Tsy/N,, dB
being P
traced
-5 0 1
back 7 0
() N\=Ty/rp, =38
1 Oorl 0.47723  0.74420 0.95665 0.99967
2 Qorl 0.48355 0.75142 0.95981 0.99974
3 Oorl 0.48386 0.75177 0.95996 0.99974
1 0.5 0.33380 0.52830 0.70280 0.76276
2 0.5 0.33379 0.52827 0.70279 0.76285
3 0.5 0.33379  0.52827 0.70279 0.76285
1 0.2 0.38543 0.60603 0.79419 0.84804
2 0.2 0.38770 0.60860 0.79531 0.84813
3 0.2 0.38782 0.60873 0.79537 0.84813
(b) x =686
3 Oorl 0.35387 0.58578 0.85349 0.99018
3 0.5 0.29572 0.49181 0.72559 0.86038
3 0.2 0.31665 0.52564 0.77163 0.90711
(c) =12

3 Oorl 0.25457 0.43630 0.69543 0.93211
3 0.5 0.23348 0.40060 0.64061 0.86539
3 0.2 0.24107 0.41345 0.66035 0.88941

Table 2. Data symbol rate selection (BLK )

1/Tgy, B, (data), G, p(dist), G,r(WB), T e Touer
symbols/s Hz dB dB ms ms
1 Future Blank 7 44 Blank Blank
2 5.6-12 500 14 87 39 1800
3 12--27 500 14 37 18- 820
4 27-56 500 14 37 8.1 390
5 56-120 5000 20 31 39 180
6 120-270 5000 20 31 1.8 82
7 270-560 5000 20 31 0.81 39
8 5601200 50K 27 24 0.39 18
9 1200-2700 50K 27 24 0.18 8.2
10 2700-5600 50K 27 24 0.081 3.9
11 5600—-12K / 500K 35 16 0.039
12 12K-27K 500K 35 16 0.018
18 27K-56K 500K 35 16 0.0081
14 56K—-120K M 45 6 0.0039
15 120K-270K 3M 45 6 0.0018
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Table 3. Data symbol rate selection (BLK IV)

1Ty, Quad gen Select BW filter
symbols/s gain, dB Gain, dB BW,F, s Tdet» TS Tout> MS
1 5.6-11.9 11 36 1.03 47.5 1800
2 12 -26.9 11 36 1.03 22.1 820
3 27 -55.9 11 36 1.03 10.0 390
4 56 -99.9 11 36 1.03 4,75 180
5 100 -219 22 25 11.9 2.21 180
6 220 479 22 25 11.9 1.00 180
7 480 -999 22 25 11.9 0.475 180
8 1.00K-2.19K 29 18 49.5 0.221 180
9 2.20K—4.79K 29 18 49.5 0.100 180
10 4.80K-9.99K 36 11 209 0.0475 180
11 10.0K-21.9K 36 11 209 0.0221 180
12 22.0K—47.9K 42 5 1020 0.0100 180
13 48.0K-99.9K 42 5 1020 0.00475 180
14 100.0K-219.X 47 0 5000 0.00221 180
15 220.K-500.K 47 0 5000 0.00100 180
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FILTER QUTPUT SIGNAL m(t)
X = F, (s) > X »
A] +
[} ! (DATA
INPUT cos(w,t + B (1) S Terps  |FILTER)
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1
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PHASE ~
switch  [* 70
A
sin (wsCr + ?(f))
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cos(wi t+8() = shiFTER VCO - Fis)
Fig. 1. Functional block diagram of telemetry subcarrier demodulator (BLK IlI)
Tsv .,
|
TSYH |
- > |
|
+ ! A YN i .
| |
I I
1 |
' l ()
Ly ! —
Y ILTER
| TIME x{) 1 ] Limimer
W Fi) = sgn {y(t))
A 1478
_ _ i
Fig. 3. Model of problem being examined
INPUT TO LIMITER
+1 - - — —~—
i
TIVE
_] _—‘ L b -
LIMITER QUTPUT

Fig. 2. Limiter input and output waveforms
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—— /Ty =1/6
—-—TD/TSY= /12

SUPPRESSION FACTOR a'
=
L

- 50% PROBABILITY DATA STREAM DOES E
SWITCH ON SUCCESSIVE DIGIT PERIODS
FOR TD/TSYZI/S, 1/6, 1/12

10 L | | | |
-15 -10 -5 0 5 10 15

STSY/N0 , dB

Fig. 4. MMTS subcarrier demodulator suppression factor vs
ratio of signal energy per symbol to noise spectral density
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Fig. 5. Data suppression factor vs data symbol
probability of transition
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OF emm——— e P=0OR1
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(b) T /Tgyy =1/3 P=0.20R0.8
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- P=0.5 1
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T T
© T/ Tey =1/2 P=0.20R0.8
1007~
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BIT RATE = 8,33 UNCODED
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107! [ 1
0.5 0.6 0.7 0.8

SDA DEGRADATION, dB

Fig. 6. BLK IV SDA model sensitivity to o' suppression
factor and -, /T, variations
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Appendix

The following analysis yields the data suppression factor o for the special cases where the incoming signal is all 1
or all —1. Suppression factors thus obtained should agree with those of probability of transition equal to O or proba-
bility of transition equal to 1.

, P = 0.5 YIELDS
a e a MINIMUM o'
(SEE FIG. 5)

0 0.5 1.0

Assume incoming signal is all —1:

E(u(®) x(t) = —VP{u(t) = 1} + (V) (—1) P{u(t) = —1}

—~VP{u(t) = 1} + V[1 — P{u(t) = 1}]
= —V[2P{u(t) =1} — 1]

P{u(t) = 1} = P{y(t) > 0}

= P{/ Ti eM™ [x(t — \) + n{t —A)]dr > O}

= P{ / eMon(t —A)dr > — / e (—V) d)\} (since rp > 0, incoming signal is —V)
0 0

I

P{ / ) e Mot —a)ydr > V‘rp}

Since
® N
n(t) = / eMont — ) dren (0, ZTD>
0
SO
o e_,/(z NAOLTD)
P{n(t) > Vsp} = —————dx — (B)
) /27 Noro
Vo 4
Let
X2
2 —
y NoTD
2
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oTD

Il

(B) ’/:" e—f"\/§d Noro
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